US 2021/0056146 Al

feature vector 114 in a database 116. The database 116 may
be internal or external to the computing device 102. For
example, the database 116 may be remote from the com-
puting device 102 and accessible to the computing device
102 via the Internet.

[0020] The computing device 102 can repeat the above
process for any number and combination of software proj-
ects to automatically build (e.g., construct) the database 116.
This can yield a database 116 with N entries, which can be
hundreds or thousands of entries for hundreds or thousands
of software projects. Each entry can include a relationship
between a software project and its feature vector. For
example, the database 116 depicted in FIG. 1 includes a
relationship between Software Project A and Feature Vector
A, another relationship between Software Project B and
Feature Vector B, and another relationship between Soft-
ware Project N and Feature Vector N.

[0021] These entries in the database 116 may be search-
able and comparable to perform various computing tasks.
For example, the computing device 102 can receive one or
more search queries 118 from a client device 120, which
may be a desktop computer, laptop computer, or mobile
device. A search query 118 can be a request to identify one
or more software projects in the database 116 that have a
particular set of software features. The computing device
102 can then execute a search process in response to the one
or more search queries 118.

[0022] In some examples, the search process can involve
the computing device 102 generating a feature mask 124
based on the particular set of software features associated
with a search query 118. A feature mask 124 is a data
structure containing elements with values defining criteria
for a search. The data structure may or may not be a vector.
The feature mask 124 may have as many elements as are
present in the feature vectors, and the feature mask 124 may
have a similar mapping of elements-to-software features as
the feature vectors. In some examples, each element in the
feature mask 124 can be a binary value indicating whether
or not a software feature corresponding to the element is to
limit the search. A binary value of 1 may indicate that
presence of the software feature is required, while a binary
value of 0 may indicate that the presence of the software
feature is optional.

[0023] For example, the computing device 102 can deter-
mine the feature mask 124 associated with the search query
118 by first generating a default feature mask in which all the
elements have default values (e.g., zeros). One simplified
example of the default feature mask can be {0, 0, 0, 0, 0, 0}.
Each element in the default feature mask can be mapped to
a particular software feature. For example, the elements in
the above default feature mask can be mapped to the
following: {C++, Openshift, Tensorflow, Linux, Machine-
learning, Python}. If the search query 118 indicates that a
particular software feature is to be searched, the computing
device 102 can then modify the corresponding element’s
value in the default feature mask to so indicate. For example,
if the search query 118 is for software projects that are
compatible with Openshift and Linux, then the computing
device 102 can change the second and fourth elements’
values to one, yielding a feature mask 124 of {0, 1, 0, 1, 0,
0}.

[0024] After determining the feature mask 124, the com-
puting device 102 can apply the feature mask 124 to some
or all of the feature vectors in the database 116 to determine

Feb. 25, 2021

search results, which may consist of a subset of feature
vectors having the particular set of software features
requested in the search query 118. Applying the feature mask
124 to a feature vector in the database 116 may involve
comparing the feature mask 124 to the feature vector or
performing mathematical operations using the feature vector
and the feature mask 124. For example, applying the feature
mask 124 to the feature vector in the database 116 may
involve comparing the feature mask 124 to the feature vector
determine if the feature vector has values of one at the
appropriate elements designated in the feature mask 124. As
another example, applying the feature mask 124 to the
feature vector in the database 116 may involve performing
a bitwise AND operation between the feature mask 124 and
the feature vector. As yet another example, applying the
feature mask 124 to the feature vector in the database 116
may involve determining a distance (e.g., Euclidian dis-
tance) between the feature mask 124 and the feature vector,
where the computing device 102 may return as search results
only those feature vectors having distances that are below a
predefined threshold. Regardless of the approach, the com-
puting device 102 determine one or more software projects
having the particular set of features identified in the search
query 118 by using the feature mask 124.

[0025] In some examples, the search query 118 may be a
request to identify a closest match to a software project 122.
The closest match can be another software project having
the largest number of software features in common with the
software project 122 among all of the other software projects
in the database 116. In some examples, the computing
device 102 can determine the closest match by determining
distances (e.g., Euclidian distances) between the feature
vector for the software project 122 and each of the other
feature vectors for the other software projects in the database
116. Whichever of the other software projects in the data-
base 116 has the closest distance to the feature vector for the
software project 122 can be the closest match to the software
project 122.

[0026] Insome examples, the search query 118 may be for
some combination of the above. As one particular example,
the software project 122 may be Tensorflow and have a
feature vector of {1, 1, 0, 0, 0, 0, 0, 1, 0}. The feature vector
may correspond to the following software features, respec-
tively: {python, machine-learning, web, Django-framework,
webassembly, sql, spark, gpu-support, java}. Thus, the fea-
ture vector indicates that Tensorflow requires Python. The
user submit a search query 118 for other software projects in
the database 116 that are similar to Tensorflow, but suitable
for a Java ecosystem rather than a Python ecosystem. To
effectuate such a search, the computing device 102 can
generate a feature mask 124 based on the search query 118.
One example of the feature mask 124 is {0, 1, 1,1, 1, 1, 1,
1, 1}. The computing device 102 can then apply this feature
mask 124 to all of the feature vectors in the database 116 to
determine a refined search space that excludes software
projects requiring Python. The computing device 102 can
also generate a modified feature vector for Tensorflow based
on the feature mask 124. For example, the computing device
102 can apply a bitwise AND operation between the feature
vector for Tensorflow and the feature mask 124 to determine
a modified feature vector of {0, 1, 0, 0, 0, 0, 0, 1, 0}. The
computing device 102 can then determine distances between
the modified feature vector for Tensorflow and each of the
other feature vectors for the other software projects in



